Συλλογισμοί


 Γενικά χαρακτηριστικά και βασικές αρχές αξιολόγησης των συλλογισμών



Α. Επιχείρημα και συλλογισμός:
  • Επιχείρημα είναι μια σειρά λογικών προτάσεων (θέσεων / απόψεων) που συνδέονται λογικά μεταξύ τους και οδηγούν σε ένα συμπέρασμα.
  • Συλλογισμός είναι η τυπική μορφή ενός επιχειρήματος. Αποτελείται από δύο προκείμενες που οδηγούν σε ένα συμπέρασμα.
π.χ.     1η προκείμενη:            Όλοι οι άνθρωποι είναι θνητοί
2η προκείμενη:            Ο Α είναι άνθρωπος
Συμπέρασμα:  Άρα ο Α είναι θνητός


Β. Ποια είναι η τυπική μορφή του συλλογισμού;
Για να θεωρείται μια σειρά από τρεις προτάσεις - δύο προκείμενες και ένα συμπέρασμα - ως συλλογισμός, πρέπει να ισχύουν τα ακόλουθα:
  1. Στις προτάσεις εμφανίζονται ανά δύο κάθε φορά τρία στοιχεία (π.χ. α-β, α-γ, β-γ), τα οποία έχουν μεταξύ τους την εξής σχέση: Το ένα στοιχείο (πρόσωπο, πράγμα, αφηρημένη έννοια, κτλ.) αποτελεί μέρος (επιμέρους ή ειδικό) του άλλου (γενικότερο σύνολο προσώπων, πραγμάτων, εννοιών κτλ.), ενώ το τρίτο στοιχείο δηλώνει ένα κοινό χαρακτηριστικό και για τα δύο προηγούμενα.
  2. Η σειρά με την οποία εμφανίζονται τα στοιχεία, καθώς και ο τρόπος της σύνδεσης (ποιο απορρέει από ποιο) καθορίζουν (α) το είδος του συλλογισμού (παραγωγικός, επαγωγικός ή αναλογικός) και (β) κατά πόσο ο συλλογισμός είναι έγκυρος, αληθής, και κατά συνέπεια λογικά ορθός.
  3. Εάν παρουσιάζεται ένα τέταρτο στοιχείο, ή ένα επιμέρους στοιχείο που δεν περιέχεται στο γενικότερο σύνολο, τότε ο συλλογισμός δεν ευσταθεί, εφόσον αυτή η μορφή δε συνάδει με την τυπική μορφή του συλλογισμού.

 Γ. Στους συλλογισμούς ισχύουν μερικοί σημαντικοί κανόνες των συνόλων
·      Τα στοιχεία ενός συνόλου παρουσιάζουν κοινά χαρακτηριστικά. Αυτό δε σημαίνει ότι όλα τα χαρακτηριστικά τους είναι τα ίδια. (π.χ. κοινό χαρακτηριστικό όλων των ανθρώπων είναι η θνησιμότητα, όμως οι άνθρωποι παρουσιάζουν πάρα πολλές διαφορές μεταξύ τους / κοινό χαρακτηριστικό όλων των μαθητών ενός τμήματος είναι ότι βρίσκονται στο ίδιο τμήμα, αυτό δε σημαίνει όμως ότι έχουν τα ίδια χαρακτηριστικά, εξωτερικά ή εσωτερικά)
·      Όταν κάτι (π.χ. μια ιδιότητα, ένα χαρακτηριστικό) ισχύει για ένα σύνολο, τότε αυτό ισχύει και για κάθε ένα από τα μέρη ενός συνόλου. (π.χ. αν όλοι οι μαθητές της τάξης φορούν στολή αυτό σημαίνει ότι και ο κάθε ένας από αυτούς φορά στολή)
·      Όταν κάτι ισχύει για ένα μέρος ενός συνόλου, αυτό δε σημαίνει αναγκαστικά ότι ισχύει για όλο το σύνολο (π.χ. αν ένας μαθητής μιλά τρεις γλώσσες, αυτό δε σημαίνει ότι όλοι οι μαθητές της τάξης μιλούν τρεις γλώσσες)

Γενικές αρχές αξιολόγησης των συλλογισμών:

Για να είναι αληθής ένας συλλογισμός πρέπει και οι προκείμενες να είναι αληθείς και το συμπέρασμα να είναι αληθές. Η αλήθεια αφορά στο περιεχόμενο του συλλογισμού.
Για να είναι έγκυρος ένας συλλογισμός πρέπει να παρατηρείται λογική αναγκαιότητα στην πορεία από τις προκείμενες προς το συμπέρασμα, πρέπει δηλαδή το συμπέρασμα να στηρίζεται σε επαρκή στοιχεία. Η εγκυρότητα αφορά κυρίως στη μορφή του συλλογισμού, στη σχέση δηλαδή ανάμεσα στις προκείμενες και το συμπέρασμα.
Για να είναι ένας συλλογισμός λογικά ορθός πρέπει να είναι και έγκυρος και αληθής.
Εάν ένας συλλογισμός είναι έγκυρος αλλά μη αληθής, τότε δεν είναι λογικά ορθός.
Ένας μη έγκυρος συλλογισμός δεν μπορεί να είναι αληθής. (εκτός εάν συμπτωματικά και μόνο το συμπέρασμα είναι αληθές, χωρίς όμως να προκύπτει από τη σχέση του με τις προκείμενες)
Κατά συνέπεια είναι καλύτερα να διερευνάτε πρώτα την εγκυρότητα και μετά την αλήθεια ενός συλλογισμού.
Προσέξτε ιδιαίτερα κατά πόσον το συμπέρασμα παρουσιάζεται με απόλυτη βεβαιότητα ή αν έχει πιθανολογικό χαρακτήρα. Στην πρώτη περίπτωση, αυτό δικαιολογείται μόνο εάν υπάρχει εγκυρότητα ενώ ταυτόχρονα οι προκείμενες είναι αληθείς. Στη δεύτερη περίπτωση το συμπέρασμα είναι εκ των πραγμάτων αληθές (το πιθανόν ναι ή πιθανόν όχι είναι η μόνη βέβαιη αλήθεια, εφόσον δε μας δεσμεύει με καμία από τις δύο απαντήσεις – ναι ή όχι)
Πώς όμως διερευνούμε την ορθότητα ενός συλλογισμού και πώς τεκμηριώνουμε την απάντησή μας, όταν θέλουμε να αποδείξουμε πότε και γιατί ένας συλλογισμός είναι ή δεν είναι λογικά ορθός; Προσέξτε τις γενικές αρχές που αφορούν κάθε ένα από τα τρία είδη συλλογισμών:
Α. Παραγωγικός συλλογισμός:
1.    Ένας παραγωγικός συλλογισμός είναι συνήθως έγκυρος, εφόσον το επιμέρους (το ειδικό) αποτελεί στοιχείο του συνόλου (του γενικού, του όλου). Γι αυτό λέμε ότι ο συλλογισμός είναι έγκυρος, γιατί το συμπέρασμα προκύπτει από λογική αναγκαιότητα.
2.    Ένας παραγωγικός συλλογισμός είναι αληθής, εάν οι δύο προκείμενες ανταποκρίνονται στην πραγματικότητα. Το συμπέρασμα είναι αληθές μόνο εάν στηρίζεται σε αληθείς προκείμενες. Δηλαδή, ένας παραγωγικός συλλογισμός, αν και συχνά είναι αληθής, δεν είναι κατανάγκην αληθής. (στην ψευδαίσθηση ότι ένας παραγωγικός συλλογισμός είναι προφανώς και αληθής στηρίζεται η προπαγάνδα, η δημαγωγία και η διαφήμιση)
3.    Εάν στην εκφώνηση της άσκησης σάς δίνειται ως δεδομένο ότι οι προκείμενες ανταποκρίνονται στην πραγματικότητα (δηλαδή είναι αληθείς), τότε και το συμπέρασμα θα είναι αληθές (εφόσον αυτό προκύπτει με λογική αναγκαιότητα).

Β. Επαγωγικός συλλογισμός:
1.    Ένας επαγωγικός συλλογισμός δεν είναι έγκυρος εφόσον:
  • το συμπέρασμα δε στηρίζεται / δεν προκύπτει από επαρκή στοιχεία
  • το συμπέρασμα αποτελεί αυθαίρετη γενίκευση
  • το συμπέρασμα δεν προκύπτει από λογική αναγκαιότητα
  • οι πληροφορίες που μας δίνουν οι προκείμενες αποτελούν αναγκαία αλλά όχι επαρκή συνθήκη για να διεξαχθεί το συγκεκριμένο συμπέρασμα

2.    Ένας επαγωγικός συλλογισμός είναι έγκυρος:
  • εάν οι προκείμενες δίνουν την αναγκαία και όχι την επαρκή συνθήκη για να προκύψει το συμπέρασμα, αλλά το συμπέρασμα έχει πιθανολογικό χαρακτήρα (πιθανόν, μπορεί, ίσως)
  • εάν στηρίζεται σε επαρκή στοιχεία (δηλαδή εάν καλύπτει όλες τις πιθανές περιπτώσεις)

3.    Ένας επαγωγικός συλλογισμός, δεν είναι αληθής εάν δεν είναι έγκυρος, έστω κι αν έχει αληθείς προκείμενες, γιατί το συμπέρασμα δεν προκύπτει από λογική αναγκαιότητα άρα δεν ξέρουμε αν είναι αληθές.

4.    Ένας επαγωγικός συλλογισμός είναι αληθής μόνο εάν είναι έγκυρος και εφόσον βεβαίως και οι προκείμενες ανταποκρίνονται στην πραγματικότητα, κατά συνέπεια το συμπέρασμα προκύπτει με βεβαιότητα.

5.    Εάν το συμπέρασμα έχει πιθανολογικό χαρακτήρα, τότε ο επαγωγικός συλλογισμός είναι και έγκυρος και αληθής (εφόσον βεβαίως οι προκείμενες είναι αληθείς).



Γ. Αναλογικός συλλογισμός


Στο αναλογικό συλλογισμό το συμπέρασμα αφορά ένα επιμέρους στοιχείο, το οποίο διαθέτει κάποιο/α κοιν/ά χαρακτηριστικό/ά με ένα άλλο επιμέρους στοιχείο (ειδικό – γενικό – ειδικό). Γιαυτό ισχύουν ανάλογοι τρόποι αξιολόγησης με τον επαγωγικό συλλογισμό.

  • Όσον αφορά την αλήθεια ενός αναλογικού συλλογισμού, ισχύει ό,τι ισχύει και στον επαγωγικό.
  • Όσον αφορά την εγκυρότητα ενός αναλογικού συλλογισμού, πρέπει να δίνεται προσοχή στο/α κοινό/ά χαρακτηριστικό/ά που συνδέει/ουν τα επιμέρους στοιχεία, για να φανεί αν υπάρχει λογική αναγκαιότητα στην πορεία από τος προκείμενες στο συμπέρασμα.

Ένας αναλογικός συλλογισμός είναι έγκυρος εάν η 2η προκείμενη αποτελεί όχι μόνο αναγκαία αλλά και επαρκή συνθήκη για να μπορεί να προκύψει το συμπέρασμα. Δηλαδή εάν το κοινό χαρακτηριστικό των δύο επιμέρους στοιχείων (που ανακοινώνεται συνήθως στη 2η προκείμενη) είναι τέτοιο, ώστε να δικαιολογεί τη θέση «ό,τι ισχύει για το ένα ισχύει και για το άλλο» (π.χ. δύο πανομοιότυπα μοντέλλα Η/Υ παρουσιάζουν τις ίδιες τεχνικές προδιαγραφές, άρα όποιο πρόγραμμα μπορεί να τρέξει το ένα, μπορεί να το τρέξει και το άλλο).
Επομένως, σε έναν αναλογικό συλλογισμό προσέχουμε κατά πόσον το κριτήριο με το οποίο τα δύο επιμέρους ανήκουν σε μια κοινή ομάδα, σε ένα γενικότερο σύνολο είναι ταυτόχρονα και κριτήριο για να διεξαχθεί το συμπέρασμα. Μόνο τότε το συμπέρασμα προκύπτει από λογική αναγκαιότητα, και άρα ο συλλογισμός είναι έγκυρος.


Θεωρία: Βαλεντίνα Σαλτέ, Φιλόλογος

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου

Αναγνώστες